jueves, 6 de septiembre de 2012

Leyes de Kepler

El astrónomo alemán Johannes Kepler (1571-1630) formuló las tres famosas leyes que llevan su nombre después de analizar un gran número de observaciones realizadas por Tycho Brahe (1546-1601) de los movimientos de los planetas, sobre todo de Marte.


Kepler, haciendo cálculos sumamente largos, encontró que había discrepancias entre la trayectoria calculada para Marte y las observaciones de Tycho, diferencias que alcanzaban en ocasiones los 8 minutos de arco (las observaciones de Tycho poseían una exactitud de alrededor de 2 minutos de arco)

Estas diferencias lo llevaron a descubrir cual era la verdadera órbita de Marte y los demás planetas del Sistema Solar.

A continuación, se explicarán las 3 leyes formuladas por Kepler, para luego hacer hincapié en la 3ra ley la cual fue desarrollada en clases y realizamos ejercicios.

1ra Ley - Órbitas Elípticas

Las órbitas de los planetas son elipses que presentan una pequeña excentricidad y en donde el Sol se localiza en uno de sus focos.

Una elipse es básicamente un círculo ligeramente aplastado. Técnicamente se denomina elipse a una curva plana y cerrada en donde la suma de la distancia a los focos (puntos fijos, F1 y F2) desde uno cualquiera de los puntos M que la forman es constante e igual a la longitud del eje mayor de la elipse (segmento AB). El eje menor de la elipse es el segmento CD, es perpendicular al segmento AB y corta a este por el medio.



La excentricidad es el grado de aplastamiento de la elipse. Una excentricidad igual a cero representa un círculo perfecto. Cuanto más grande la excentricidad, mayor el aplastamiento de la elipse. Órbitas con excentricidades iguales a uno se denominan parabólicas, y mayores a uno hiperbólicas.

Las órbitas de los planetas son elípticas, presentando una pequeña excentricidad. En el caso de la Tierra el valor de la excentricidad es de 0.017, el planeta de mayor excentricidad es Plutón con 0.248, y le sigue de cerca Mercurio con 0.206.

2da Ley - Ley de las Áreas

Las áreas barridas por el radio vector que une a los planetas al centro del Sol son iguales a tiempos iguales.

La velocidad orbital de un planeta (velocidad a la que se desplaza por su órbita) es variable, de forma inversa a la distancia al Sol: a mayor distancia la velocidad orbital será menor, a distancias menores la velocidad orbital será mayor. La velocidad es máximo en el punto más cercano al Sol (perihelio) y mínima en su punto más lejano (afelio).

El radio vector de un planeta es la línea que une los centros del planeta y el Sol en un instante dado. El área que describen en cierto intervalo de tiempo formada entre un primer radio vector y un segundo radio vector mientras el planeta se desplaza por su órbita es igual al área formada por otro par de radio vectores en igual intervalo de tiempo orbital.



3ra Ley - Ley Armónica

Los cuadrados de los períodos orbitales sidéreos de los planetas son proporcionales a los cubos de sus distancias medias al Sol.

El período sidéreo se mide desde el planeta y respecto de las estrellas: está referido al tiempo transcurrido entre dos pasajes sucesivos del Sol por el meridiano de una estrella.



Donde T1 y T2 son los períodos orbitales y d1 y d2 las distancias a las cuales orbitan del cuerpo central. La fórmula es válida mientras las masas de los objetos sean despreciables en comparación con la del cuerpo central al cual orbitan.

Esta ley fue publicada en 1614 en la más importante obra de Kepler, "Harmonici Mundi", solucionando el problema de la determinación de las distancias de los planetas al Sol. Posteriormente Newton explicaría, con su ley de gravitación universal, las causas de esta relación entre el período y la distancia.

No hay comentarios:

Publicar un comentario